Displaying 1241 – 1260 of 2377

Showing per page

Numerical procedure to approximate a singular optimal control problem

Silvia C. Di Marco, Roberto L.V. González (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we deal with the numerical solution of a Hamilton-Jacobi-Bellman (HJB) equation with infinitely many solutions. To compute the maximal solution – the optimal cost of the original optimal control problem – we present a complete discrete method based on the use of some finite elements and penalization techniques.

Numerical realization of a fictitious domain approach used in shape optimization. Part I: Distributed controls

Jana Daňková, Jaroslav Haslinger (1996)

Applications of Mathematics

We deal with practical aspects of an approach to the numerical realization of optimal shape design problems, which is based on a combination of the fictitious domain method with the optimal control approach. Introducing a new control variable in the right-hand side of the state problem, the original problem is transformed into a new one, where all the calculations are performed on a fixed domain. Some model examples are presented.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Nuovi risultati sulla semicontinuità inferiore di certi funzionali integrali

Luigi Ambrosio (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Given an open subset Ω of n and a Borel function f : Ω × × n [ 0 , + [ , conditions on f are given which assure the lower semicontinuity of the functional Ω f ( x , u , D u ) d x with respect to different topologies.

Nuovi teoremi sulle funzioni a variazione limitata

Diego Pallara (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Vengono presentate alcune connessioni tra gli spazi classici delle funzioni a variazione limitata ed altre classi di funzioni la cui variazione è opportunamente controllata, cioè le classi GBV introdotte da E. De Giorgi e L. Ambrosio, e le classi BBV, LBV, GBV* introdotte in questa Nota. Le dimostrazioni dei risultati enunciati, insieme con altri dettagli, appariranno in un successivo lavoro.

Omogeneizzazione di funzionali debolmente quasi periodici

Andrea Braides (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia f = f ( x , z ) quasiconvessa in z , quasiperiodica in x nel senso di Besicovitch e soddisfi le disuguaglianze: | z | p f ( x , z ) Λ ( 1 + | z | p ) . Allora f può essere omogeneizzata: esiste una funzione Ψ che dipende solo da z tale che i funzionali Ω f ( x ϵ , D u ( x ) ) d x    u H 1 , p ( Ω ; m ) convergono, per ϵ tendente a 0 (nel senso della Γ -convergenza) a Ω Ψ ( D u ( x ) ) d x . Inoltre si può dare una formula asintotica per Ψ .

On a Bernoulli problem with geometric constraints

Antoine Laurain, Yannick Privat (2012)

ESAIM: Control, Optimisation and Calculus of Variations

A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane  {x1 = 0}  where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed...

On a Bernoulli problem with geometric constraints

Antoine Laurain, Yannick Privat (2012)

ESAIM: Control, Optimisation and Calculus of Variations

A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane  {x1 = 0}  where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed...

On a Class of Elliptic Equations for the N-Laplacian in R^n with One-Sided Exponential Growth

Candela, Anna Maria, Squassina, Marco (2003)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30By means of a suitable nonsmooth critical point theory for lower semicontinuous functionals we prove the existence of infinitely many solutions for a class of quasilinear Dirichlet problems with symmetric non-linearities having a one-sided growth condition of exponential type.The research of the authors was partially supported by the MIUR project “Variational and topological methods in the study of nonlinear phenomena” (COFIN 2001)....

On a class of variational integrals over BV varieties

Primo Brandi, Anna Salvadori (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present here our most recent results ([1def]) about the definition of non-linear Weiertrass-type integrals over BV varieties, possibly discontinuous and not necessarily Sobolev's.

On a class of variational problems with linear growth and radial symmetry

Michael Bildhauer, Martin Fuchs (2021)

Commentationes Mathematicae Universitatis Carolinae

We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.

Currently displaying 1241 – 1260 of 2377