On infinite-horizon optimal control problems.
A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given.
The paper is devoted to the study of solvability of boundary value problems for the stream function, describing non-viscous, irrotional, subsonic flowes through cascades of profiles in a layer of variable thickness. From the definition of a classical solution the variational formulation is derive and the concept of a weak solution is introduced. The proof of the existence and uniqueness of the weak solution is based on the monotone operator theory.
Some conditions for existence of Lipschitz selections of multifunctions with decomposable values are given.
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
Vengono studiate proprietà di semicontinuità per integrali multipli quando soddisfa a condizioni di semicontinuità nelle variabili e può non essere soggetta a ipotesi di coercitività, e le successioni ammissibili in convergono fortemente in .
We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional . The proofs are based on arguments from the theory of Young measures.
We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.
In the paper necessary optimality conditions are derived for the minimization of a locally Lipschitz objective with respect to the consttraints , where is a closed set and is a set-valued map. No convexity requirements are imposed on . The conditions are applied to a generalized mathematical programming problem and to an abstract finite-dimensional optimal control problem.