Displaying 1581 – 1600 of 2377

Showing per page

Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions

Karl Kunisch, Marcus Wagner (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.

Optimal control of the Primitive Equations of the ocean with Lagrangian observations

Maëlle Nodet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...

Optimal control problem and maximum principle for fractional order cooperative systems

G. M. Bahaa (2019)

Kybernetika

In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal...

Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints

Igor Bock, Ján Lovíšek (1987)

Aplikace matematiky

We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.

Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics

Arturo Enrique Gil García, Vadim Azhmyakov, Michael V. Basin (2014)

Kybernetika

This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency...

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek (1989)

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Optimal design of laminated plate with obstacle

Ján Lovíšek (1992)

Applications of Mathematics

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable.

Optimal design problems for a dynamic viscoelastic plate. I. Short memory material

Igor Bock (1995)

Applications of Mathematics

We deal with an optimal control problem with respect to a variable thickness for a dynamic viscoelastic plate with velocity constraints. The state problem has the form of a pseudohyperbolic variational inequality. The existence and uniqueness theorem for the state problem and the existence of an optimal thickness function are proved.

Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion

Yuncheng You (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Slightly below the transition temperatures, the behavior of superconducting materials is governed by the Ginzburg-Landau (GL) equation which characterizes the dynamical interaction of the density of superconducting electron pairs and the exited electromagnetic potential. In this paper, an optimal control problem of the strength of external magnetic field for one-dimensional thin film superconductors with respect to a convex criterion functional is considered. It is formulated as a nonlinear coefficient...

Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems

Ilyasse Aksikas, Joseph J. Winkin, Denis Dochain (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...

Optimal networks for mass transportation problems

Alessio Brancolini, Giuseppe Buttazzo (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In the framework of transport theory, we are interested in the following optimization problem: given the distributions μ + of working people and μ - of their working places in an urban area, build a transportation network (such as a railway or an underground system) which minimizes a functional depending on the geometry of the network through a particular cost function. The functional is defined as the Wasserstein distance of μ + from μ - with respect to a metric which depends on the transportation network....

Optimal networks for mass transportation problems

Alessio Brancolini, Giuseppe Buttazzo (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In the framework of transport theory, we are interested in the following optimization problem: given the distributions µ+ of working people and µ- of their working places in an urban area, build a transportation network (such as a railway or an underground system) which minimizes a functional depending on the geometry of the network through a particular cost function. The functional is defined as the Wasserstein distance of µ+ from µ- with respect to a metric which depends on the transportation...

Optimal nonlinear transformations of random variables

Aldo Goia, Ernesto Salinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....

Optimal position targeting with stochastic linear-quadratic costs

Stefan Ankirchner, Thomas Kruse (2015)

Banach Center Publications

We consider the dynamic control problem of attaining a target position at a finite time T, while minimizing a linear-quadratic cost functional depending on the position and speed. We assume that the coefficients of the linear-quadratic cost functional are stochastic processes adapted to a Brownian filtration. We provide a probabilistic solution in terms of two coupled backward stochastic differential equations possessing a singularity at the terminal time T. We verify optimality of the candidate...

Currently displaying 1581 – 1600 of 2377