Displaying 181 – 200 of 517

Showing per page

Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints

Eduardo Casas (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....

Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints

Eduardo Casas (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...

Evolution of structure for direct control optimization

Maciej Szymkat, Adam Korytowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper presents the Monotone Structural Evolution, a direct computational method of optimal control. Its distinctive feature is that the decision space undergoes gradual evolution in the course of optimization, with changing the control parameterization and the number of decision variables. These structural changes are based on an analysis of discrepancy between the current approximation of an optimal solution and the Maximum Principle conditions. Two particular implementations, with spike and...

Evolutionary variational inequalities and applications in plasticity

Jindřich Nečas, Luděk Trávníček (1980)

Aplikace matematiky

An abstract theory of evolutionary variational inequalities and its applications to the traction boundary value problems of elastoplasticity are studied, using the penalty method to prove the existence of a solution.

Extending the applicability of Newton's method using nondiscrete induction

Ioannis K. Argyros, Saïd Hilout (2013)

Czechoslovak Mathematical Journal

We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete...

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening

Claudia Comi, Giulio Maier (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for the solution...

Currently displaying 181 – 200 of 517