Partial regularity for higher order variational problems under anisotropic growth conditions.
We consider higher order functionals of the form where the integrand , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition with γ, L > 0 and . We study minimizers of the functional and prove a partial -regularity result.
We consider higher order functionals of the form where the integrand , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition with γ, L > 0 and . We study minimizers of the functional and prove a partial -regularity result.
We prove partial regularity for minimizers of the functional where the integrand f(x,u,ξ) is quasiconvex with subquadratic growth: , p < 2. We also obtain the same results for ω-minimizers.
We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.
We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.
We prove uniformcontinuity of radiallysymmetric vector minimizers uA(x) = UA(|x|) to multiple integrals ∫BRL**(u(x), |Du(x)|) dx on a ballBR ⊂ ℝd, among the Sobolev functions u(·) in A+W01,1 (BR, ℝm), using a jointlyconvexlscL∗∗ : ℝm×ℝ → [0,∞] with L∗∗(S,·) even and superlinear. Besides such basic hypotheses, L∗∗(·,·) is assumed to satisfy also a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗(|u(x)|,|Du(x)|). Complete liberty is given for L∗∗(S,λ)...
This paper is devoted to singular calculus of variations problems with constraint functional not regular at the solution point in the sense that the first derivative is not surjective. In the first part of the paper we pursue an approach based on the constructions of the p-regularity theory. For p-regular calculus of variations problem we formulate and prove necessary and sufficient conditions for optimality in singular case and illustrate our results by classical example of calculus of variations...
Si considerano questioni riguardanti la regolarità delle soluzioni di problemi di minimo di funzionali che coinvolgono sia termini di volume che di superficie. Si danno indicazioni sui risultati attesi in alcuni casi di notevole interesse, collegati a problemi di segmentazione di immagini e alla teoria dei cristalli liquidi.
Nous prouvons que pour toute solution du problème de Kelvin–Helmholtz des nappes de tourbillons pour l’équation d’Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de sur lorsque est définie sur un demi-interval .
Nous prouvons que pour toute solution u du problème de Kelvin–Helmholtz des nappes de tourbillons pour l'équation d'Euler bi-dimensionnelle, définie localement en temps, la courbe de saut de u et la densité de tourbillon sont analytiques (sous une hypothèse de régularité Holderienne de la courbe de saut). Nous donnons également un résultat de régularité partielle de la trace de u sur t=0 lorsque u est définie sur un demi-interval [O,T[.
We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.
We consider an optimal control problem of Mayer type and prove that, under suitable conditions on the system, the value function is differentiable along optimal trajectories, except possibly at the endpoints. We provide counterexamples to show that this property may fail to hold if some of our conditions are violated. We then apply our regularity result to derive optimality conditions for the trajectories of the system.