Displaying 381 – 400 of 597

Showing per page

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control technique...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...

Optimizing the linear quadratic minimum-time problem for discrete distributed systems

Mostafa Rachik, Ahmed Abdelhak (2002)

International Journal of Applied Mathematics and Computer Science

With reference to the work of Verriest and Lewis (1991) on continuous finite-dimensional systems, the linear quadratic minimum-time problem is considered for discrete distributed systems and discrete distributed time delay systems. We treat the problem in two variants, with fixed and free end points. We consider a cost functional J which includes time, energy and precision terms, and then we investigate the optimal pair (N, u) which minimizes J.

Partial regularity for anisotropic functionals of higher order

Menita Carozza, Antonia Passarelli di Napoli (2007)

ESAIM: Control, Optimisation and Calculus of Variations


We prove a C k , α partial regularity result for local minimizers of variational integrals of the type I ( u ) = Ω f ( D k u ( x ) ) d x , assuming that the integrand f satisfies (p,q) growth conditions.


Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Partial regularity of minimizers of higher order integrals with (p, q)-growth

Sabine Schemm (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider higher order functionals of the form F [ u ] = Ω f ( D m u ) d x for u : n Ω N , where the integrand f : m ( n , N ) , m≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition γ | A | p f ( A ) L ( 1 + | A | q ) for all A m ( n , N ) , with γ, L > 0 and 1 < p q < min { p + 1 n , 2 n - 1 2 n - 2 p } . We study minimizers of the functional F [ · ] and prove a partial C loc m , α -regularity result.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Penalization of Dirichlet optimal control problems

Eduardo Casas, Mariano Mateos, Jean-Pierre Raymond (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

Currently displaying 381 – 400 of 597