Displaying 121 – 140 of 597

Showing per page

Design of robust output affine quadratic controller

Vojtech Veselý (2004)

Kybernetika

The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure.

Deterministic minimax impulse control in finite horizon: the viscosity solution approach

Brahim El Asri (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study here the impulse control minimax problem. We allow the cost functionals and dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that the value function of the problem is continuous. Moreover, the value function is characterized as the unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an application in mathematical finance.

Different models of chemotherapy taking into account drug resistance stemming from gene amplification

Jarosław Śmieja, Andrzej Świerniak (2003)

International Journal of Applied Mathematics and Computer Science

This paper presents an analysis of some class of bilinear systems that can be applied to biomedical modelling. It combines models that have been studied separately so far, taking into account both the phenomenon of gene amplification and multidrug chemotherapy in their different aspects. The mathematical description is given by an infinite dimensional state equation with a system matrix whose form allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension,...

Differentiability for minimizers of anisotropic integrals

Paola Cavaliere, Anna D'Ottavio, Francesco Leonetti, Maria Longobardi (1998)

Commentationes Mathematicae Universitatis Carolinae

We consider a function u : Ω N , Ω n , minimizing the integral Ω ( | D 1 u | 2 + + | D n - 1 u | 2 + | D n u | p ) d x , 2 ( n + 1 ) / ( n + 3 ) p < 2 , where D i u = u / x i , or some more general functional with the same behaviour; we prove the existence of second weak derivatives D ( D 1 u ) , , D ( D n - 1 u ) L 2 and D ( D n u ) L p .

Differential games of partial information forward-backward doubly SDE and applications

Eddie C. M. Hui, Hua Xiao (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper addresses a new differential game problem with forward-backward doubly stochastic differential equations. There are two distinguishing features. One is that our game systems are initial coupled, rather than terminal coupled. The other is that the admissible control is required to be adapted to a subset of the information generated by the underlying Brownian motions. We establish a necessary condition and a sufficient condition for an equilibrium point of nonzero-sum games and a saddle...

Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions

Yousef Edrisi Tabriz, Mehrdad Lakestani (2015)

Kybernetika

In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative ( 𝐃 φ ) and integration matrix ( 𝐏 ) are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed...

Discrete mechanics and optimal control: An analysis

Sina Ober-Blöbaum, Oliver Junge, Jerrold E. Marsden (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

Discrete mechanics and optimal control: An analysis*

Sina Ober-Blöbaum, Oliver Junge, Jerrold E. Marsden (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

Double-stepped adaptive control for hybrid systems with unknown Markov jumps and stochastic noises

Shuping Tan, Ji-Feng Zhang (2009)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the sampled-data based adaptive linear quadratic (LQ) control of hybrid systems with both unmeasurable Markov jump processes and stochastic noises. By the least matching error estimation algorithm, parameter estimates are presented. By a double-step (DS) sampling approach and the certainty equivalence principle, a sampled-data based adaptive LQ control is designed. The DS-approach is characterized by a comparatively large estimation step for parameter estimation and...

Double-stepped adaptive control for hybrid systems with unknown Markov jumps and stochastic noises

Shuping Tan, Ji-Feng Zhang (2008)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the sampled-data based adaptive linear quadratic (LQ) control of hybrid systems with both unmeasurable Markov jump processes and stochastic noises. By the least matching error estimation algorithm, parameter estimates are presented. By a double-step (DS) sampling approach and the certainty equivalence principle, a sampled-data based adaptive LQ control is designed. The DS-approach is characterized by a comparatively large estimation step for parameter estimation and...

Dualidad de Haar y problemas de momentos.

Miguel Angel Goberna Torrent (1986)

Trabajos de Investigación Operativa

En la primera parte de este trabajo damos una versión simplificada de la conocida relación entre la dualidad en Programación Semi-Infinita y cierta clase de problemas de momentos, basándonos en las propiedades de los sistemas de Farkas-Minkowski. Planteamos a continuación otra clase de problemas de momentos para cuyo análisis resulta de utilidad una generalización del Lema de Farkas.

Duality for a fractional variational formulation using η -approximated method

Sony Khatri, Ashish Kumar Prasad (2023)

Kybernetika

The present article explores the way η -approximated method is applied to substantiate duality results for the fractional variational problems under invexity. η -approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.

Currently displaying 121 – 140 of 597