... Minimizing Currents.
The numerical approximation of the minimum problem: , is considered, where . The solution to this problem is a set with prescribed mean curvature and contact angle at the intersection of with . The functional is first relaxed with a sequence of nonconvex functionals defined in which, in turn, are discretized by finite elements. The -convergence of the discrete functionals to as well as the compactness of any sequence of discrete absolute minimizers are proven.
We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.