Displaying 801 – 820 of 842

Showing per page

Variational problems and PDEs in affine differential geometry

H. Z. Li (2005)

Banach Center Publications

This paper is part of the autumn school on "Variational problems and higher order PDEs for affine hypersurfaces". We discuss variational problems in equiaffine differential geometry, centroaffine differential geometry and relative differential geometry, which have been studied by Blaschke [Bla], Chern [Ch], C. P. Wang [W], Li-Li-Simon [LLS], and Calabi [Ca-II]. We first derive the Euler-Lagrange equations in these settings; these equations are complicated, strongly nonlinear fourth order PDEs. We...

Variations of additive functions

Zoltán Buczolich, Washek Frank Pfeffer (1997)

Czechoslovak Mathematical Journal

We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.

Vers un théorème de Skorohod simultané

Henri Heinich (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous étudions un théorème de Skorohod pour des mesures vectorielles à valeurs d . En notant X ( ) la mesure image de par la variable aléatoire X , nous donnons des classes de mesures et éventuel-lement de variables telles que, si la suite { X n ( ) } converge étroitement, il existe une suite { φ n } , φ n ( ) = X n ( ) qui converge en mesure, éventuel-lement p.s.Le problème de Monge est abordé comme application. Soit | | la mesure variation de , pour un couple ( , ) et une fonction coût c , le problème de Monge est l’existence d’une fonction...

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Weak and strong density results for the Dirichlet energy

Mariano Giaquinta, Domenico Mucci (2004)

Journal of the European Mathematical Society

Let 𝒴 be a smooth oriented Riemannian manifold which is compact, connected, without boundary and with second homology group without torsion. In this paper we characterize the sequential weak closure of smooth graphs in B n × 𝒴 with equibounded Dirichlet energies, B n being the unit ball in n . More precisely, weak limits of graphs of smooth maps u k : B n 𝒴 with equibounded Dirichlet integral give rise to elements of the space cart 2 , 1 ( B n × 𝒴 ) (cf. [4], [5], [6]). In this paper we prove that every element T in cart 2 , 1 ( B n × 𝒴 ) is the weak limit...

Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side

Ivan Hlaváček, Michal Křížek (1992)

Applications of Mathematics

Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.

Currently displaying 801 – 820 of 842