A bridge principle for minimal and constant mean curvature submanifolds of RN.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Page 1 Next
N. Smale (1987)
Inventiones mathematicae
Gisella Croce, Catherine Lacour, Gérard Michaille (2009)
ESAIM: Control, Optimisation and Calculus of Variations
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order concentrated on an -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
Gisella Croce, Catherine Lacour, Gérard Michaille (2008)
ESAIM: Control, Optimisation and Calculus of Variations
We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order concentrated on an ε-neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.
Domenico Mucci (2001)
Journal of the European Mathematical Society
For vector valued maps, convergence in and of all minors of the Jacobian matrix in is equivalent to convergence weakly in the sense of currents and in area for graphs. We show that maps defined on domains of dimension can be approximated strongly in this sense by smooth maps if and only if the same property holds for the restriction to a.e. 2-dimensional plane intersecting the domain.
Chaohao Gu (1988)
Journal für die reine und angewandte Mathematik
Ulrich Dierkes (1989)
Manuscripta mathematica
Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2012)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...
Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2011)
ESAIM: Mathematical Modelling and Numerical Analysis
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...
Matteo Novaga, Emanuele Paolini (1999)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
Annibale Magni (2015)
Geometric Flows
We study the gradient flow of the L2−norm of the second fundamental form for smooth immersions of two-dimensional surfaces into compact Riemannian manifolds. By analogy with the results obtained in [10] and [11] for the Willmore flow, we prove lifespan estimates in terms of the L2−concentration of the second fundamental form of the initial data and we show the existence of blowup limits. Under special condition both on the initial data and on the target manifold, we prove a long time existence result...
Silvano Delladio (2011)
Annales Polonici Mathematici
Let m,n be positive integers such that m < n and let G(n,m) be the Grassmann manifold of all m-dimensional subspaces of ℝⁿ. For V ∈ G(n,m) let denote the orthogonal projection from ℝⁿ onto V. The following characterization of purely unrectifiable sets holds. Let A be an -measurable subset of ℝⁿ with . Then A is purely m-unrectifiable if and only if there exists a null subset Z of the universal bundle such that, for all P ∈ A, one has . One can replace “for all P ∈ A” by “for -a.e. P ∈...
Braides, Andrea, Chiadò Piat, Valeria (1995)
Journal of Convex Analysis
Nicola Fusco, John E. Hutchinson (1995)
Manuscripta mathematica
Luca Granieri (2010)
ESAIM: Control, Optimisation and Calculus of Variations
We provide an approximation of Mather variational problem by finite dimensional minimization problems in the framework of Γ-convergence. By a linear programming interpretation as done in [Evans and Gomes, ESAIM: COCV 8 (2002) 693–702] we state a duality theorem for the Mather problem, as well a finite dimensional approximation for the dual problem.
Friedrich Tomi (1986)
Annales de l'I.H.P. Analyse non linéaire
C. Lederman (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)
Studia Mathematica
The duality theory for the Monge-Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be Polish and equipped with Borel probability measures μ and ν. The transport cost function c: X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport...
Henry C. Wente (1971)
Mathematische Zeitschrift
Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)
ESAIM: Probability and Statistics
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.
Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)
ESAIM: Probability and Statistics
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic...
Page 1 Next