Density theorems for local minimizers of area-type functionals
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset of a reference domain, and the complement of is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure , which is the total work of the pressure and...
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure...
The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma.
The Mumford-Shah functional, introduced to study image segmentation problems, is approximated in the sense of vergence by a sequence of integral functionals defined on piecewise affine functions.
We investigate the relationship between a discrete version of thickness and its smooth counterpart. These discrete energies are deffned on equilateral polygons with n vertices. It will turn out that the smooth ropelength, which is the scale invariant quotient of length divided by thickness, is the Γ-limit of the discrete ropelength for n → ∞, regarding the topology induced by the Sobolev norm ‖ · ‖ W1,∞(S1,ℝd). This result directly implies the convergence of almost minimizers of the discrete energies...
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.