Page 1

Displaying 1 – 19 of 19

Showing per page

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.u is a scalar density function and...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.144 (1998) 1–46] for a first-order...

Hölder regularity of three-dimensional minimal cones in ℝⁿ

Tien Duc Luu (2014)

Annales Polonici Mathematici

We show the local Hölder regularity of Almgren minimal cones of dimension 3 in ℝⁿ away from their centers. The proof is almost elementary but we use the generalized theorem of Reifenberg. In the proof, we give a classification of points away from the center of a minimal cone of dimension 3 in ℝⁿ, into types ℙ, 𝕐 and 𝕋. We then treat each case separately and give a local Hölder parameterization of the cone.

Hölder regularity of two-dimensional almost-minimal sets in n

Guy David (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a different and probably more elementary proof of a good part of Jean Taylor’s regularity theorem for Almgren almost-minimal sets of dimension 2 in 3 . We use this opportunity to settle some details about almost-minimal sets, extend a part of Taylor’s result to almost-minimal sets of dimension 2 in n , and give the expected characterization of the closed sets E of dimension 2 in 3 that are minimal, in the sense that H 2 ( E F ) H 2 ( F E ) for every closed set F such that there is a bounded set B so that F = E out...

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of variational problems in manifold valued Sobolev spaces

Jean-François Babadjian, Vincent Millot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var. Part. Diff. Eq. 9 (1999) 185–206]. For energies with superlinear or linear growth, a Γ-convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation...

Hybrid level set phase field method for topology optimization of contact problems

Andrzej Myśliński, Konrad Koniarski (2015)

Mathematica Bohemica

The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the...

Currently displaying 1 – 19 of 19

Page 1