Displaying 181 – 200 of 258

Showing per page

Altitude, Orthocenter of a Triangle and Triangulation

Roland Coghetto (2016)

Formalized Mathematics

We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

Ambiguous loci of the farthest distance mapping from compact convex sets

F. De Blasi, J. Myjak (1995)

Studia Mathematica

Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by K 0 the set of all X ∈ K() such that the farthest distance mapping a M X ( a ) is multivalued on a dense subset of . It is proved that K 0 is a residual dense subset of K().

An axiom system for full 3 -dimensional Euclidean geometry

Jarosław Kosiorek (1991)

Mathematica Bohemica

We present an axiom system for class of full Euclidean spaces (i.e. of projective closures of Euclidean spaces) and prove the representation theorem for our system, using connections between Euclidean spaces and elliptic planes.

An axiom system for incidence spatial geometry.

Rafael María Rubio, Alfonso Ríder (2008)

RACSAM

Incidence spatial geometry is based on three-sorted structures consisting of points, lines and planes together with three intersort binary relations between points and lines, lines and planes and points and planes. We introduce an equivalent one-sorted geometrical structure, called incidence spatial frame, which is suitable for modal considerations. We are going to prove completeness by SD-Theorem. Extensions to projective, affine and hyperbolic geometries are also considered.

Currently displaying 181 – 200 of 258