Euclidean Convexity Cannot be Compactified.
Euler's polyhedron theorem states for a polyhedron p, thatV - E + F = 2,where V, E, and F are, respectively, the number of vertices, edges, and faces of p. The formula was first stated in print by Euler in 1758 [11]. The proof given here is based on Poincaré's linear algebraic proof, stated in [17] (with a corrected proof in [18]), as adapted by Imre Lakatos in the latter's Proofs and Refutations [15].As is well known, Euler's formula is not true for all polyhedra. The condition on polyhedra considered...
We relate the total curvature and the isoperimetric deficit of a curve in a two-dimensional space of constant curvature with the area enclosed by the evolute of . We provide also a Gauss-Bonnet theorem for a special class of evolutes.
We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.