Un panorama de variedades aproximadamente Kähler.
Nous montrons qu’une surface minimale complété, plongée dans , de courbure totale finie et homéomorphe a moins deux points est l’hélicoïde.
Si dimostra l'esistenza di una struttura complessa compatibile globale sulle varietà quaternionali di Hermite-Weyl compatte regolari. Se ne deducono alcune restrizioni sui numeri di Betti.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
In this paper we consider non-compact cylinder-like surfaces called unduloids and study some aspects of their geometry. In particular, making use of a Kenmotsu-type representation of these surfaces, we derive explicit formulas for the lengths and areas of arbitrary segments, along with a formula for the volumes enclosed by them.
On démontre que si le rayon d’injectivité d’une variété riemannienne compacte est égal à , alors le volume de cette variété est supérieur ou égal à celui de la sphère de même dimension et de courbure sectionnelle constante et égale à . L’égalité ne peut se produire que pour cette sphère précise.
On montre qu’une 2-forme non nulle sur une variété , telle que le pseudogroupe des difféomorphismes locaux la préservant soit transitif sur le fibré des directions tangentes, est symplectique si la dimension de n’est pas . De plus, il y a un contre-exemple en dimension 6, dont on montre qu’il est essentiellement unique.