Characterization of Riemannian Manifolds with Weak Homology Group G2 (Following A. Gray).
We outline some of the tools C. Ehresmann introduced in Differential Geometry (fiber bundles, connections, jets, groupoids, pseudogroups). We emphasize two aspects of C. Ehresmann's works: use of Cartan notations for the theory of connections and semi-holonomic jets.
Si fa vedere che alcune classi di Chern di fibrati vettoriali complessi possono essere costruite non solo partendo da connessioni ma, sotto certe condizioni, anche da connessioni lineari singolari. Nel caso particolare del fibrato tangente possono essere costruite anche a partire da metriche singolari. Viene fatto uso in modo essenziale della -coomologia di de Rham (introdotta da Cheeger e Teleman).
Le but de ce travail est double : d’une part, généraliser la construction des classes exotiques pour l’appliquer à d’autres problèmes géométriques que ceux issus des -structures ; d’autre part, préciser, grâce à la notion de -connexité, remplaçant avantageusement les formules de dérivation utilisées précédemment, l’argument d’invariance homotopique permettant d’obtenir des théorèmes de rigidité, montrant simultanément pourquoi la seule connexité des ensembles de connexions considérés ne suffit...
We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann -connection.
We consider a vector bundle and the principal bundle of frames of . Let be a principal connection on and let be a linear connection on . We classify all principal connections on naturally given by and .
This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.