Displaying 81 – 100 of 116

Showing per page

Pseudo-real principal Higgs bundles on compact Kähler manifolds

Indranil Biswas, Oscar García-Prada, Jacques Hurtubise (2014)

Annales de l’institut Fourier

Let X be a compact connected Kähler manifold equipped with an anti-holomorphic involution which is compatible with the Kähler structure. Let G be a connected complex reductive affine algebraic group equipped with a real form σ G . We define pseudo-real principal G -bundles on X . These are generalizations of real algebraic principal G -bundles over a real algebraic variety. Next we define stable, semistable and polystable pseudo-real principal G -bundles. Their relationships with the usual stable, semistable...

Scalar curvature and connected sums of self-dual 4-manifolds

Mustafa Kalafat (2011)

Journal of the European Mathematical Society

Under a reasonable vanishing hypothesis, Donaldson and Friedman proved that the connected sum of two self-dual Riemannian 4-manifolds is again self-dual. Here we prove that the same result can be extended to the positive scalar curvature case. This is an analogue of the classical theorem of Gromov–Lawson and Schoen–Yau in the self-dual category. The proof is based on twistor theory.

Seiberg-Witten Theory

Jürgen Eichhorn, Thomas Friedrich (1997)

Banach Center Publications

We give an introduction into and exposition of Seiberg-Witten theory.

Smooth metric measure spaces, quasi-Einstein metrics, and tractors

Jeffrey Case (2012)

Open Mathematics

We introduce the tractor formalism from conformal geometry to the study of smooth metric measure spaces. In particular, this gives rise to a correspondence between quasi-Einstein metrics and parallel sections of certain tractor bundles. We use this formulation to give a sharp upper bound on the dimension of the vector space of quasi-Einstein metrics, providing a different perspective on some recent results of He, Petersen and Wylie.

Currently displaying 81 – 100 of 116