Displaying 161 – 180 of 209

Showing per page

Some framed f -structures on transversally Finsler foliations

Cristian Ida (2011)

Annales UMCS, Mathematica

Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3, ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.

Some remarks on Lie flows.

Miquel Llabrés, Agustí Reventós (1989)

Publicacions Matemàtiques

The first part of this paper is concerned with geometrical and cohomological properties of Lie flows on compact manifolds. Relations between these properties and the Euler class of the flow are given.The second part deals with 3-codimensional Lie flows. Using the classification of 3-dimensional Lie algebras we give cohomological obstructions for a compact manifold admits a Lie flow transversely modeled on a given Lie algebra.

Stability of Tangential Locally Conformal Symplectic Forms

Cristian Ida (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.

Structure des feuilletages kähleriens en courbure semi-négative

Frédéric Touzet (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous étudions dans cet article quelques propriétés des feuilletages (transversalement) kähleriens sur une variété compacte lorsque la forme de Ricci transverse est « suffisamment »   négative. Nous établissons plus précisément que l’algébre de Lie du pseudo-groupe d’holonomie est semi-simple. Il s’agit en fait dune version feuilletée d’un résultat dû à Nadel relatif au groupe d’automorphismes de certaines variétés complexes compactes. Ceci fournit un critére qui assure que les feuilles d’un feuilletage...

Structure of a leaf of some codimension one riemannian foliation

Krystyna Bugajska (1988)

Annales de l'institut Fourier

Some properties of the range on an open leaf of some codimension-one foliation are shown. They are different from the known properties of the distance of leaves. They imply that leaf is of fibred type over a complete Riemannian manifold with boundary, as well that there exists some vector field v on . If v is parallel then is diffeomorphic to ' × R and has non-positive curvature.

Sur les feuilletages des variétés fibrées

Hamidou Dathe, Cédric Tarquini (2008)

Annales mathématiques Blaise Pascal

Nous construisons un feuilletage exotique de classe C 1 sur tout fibré hyperbolique de genre 1 . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.

Tenseness of Riemannian flows

Hiraku Nozawa, José Ignacio Royo Prieto (2014)

Annales de l’institut Fourier

We show that any transversally complete Riemannian foliation of dimension one on any possibly non-compact manifold M is tense; namely, M admits a Riemannian metric such that the mean curvature form of is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some...

The automorphism groups of foliations with transverse linear connection

Nina Zhukova, Anna Dolgonosova (2013)

Open Mathematics

The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.

The BIC of a singular foliation defined by an abelian group of isometries

Martintxo Saralegi-Aranguren, Robert Wolak (2006)

Annales Polonici Mathematici

We study the cohomology properties of the singular foliation ℱ determined by an action Φ: G × M → M where the abelian Lie group G preserves a riemannian metric on the compact manifold M. More precisely, we prove that the basic intersection cohomology * p ̅ ( M / ) is finite-dimensional and satisfies the Poincaré duality. This duality includes two well known situations: ∙ Poincaré duality for basic cohomology (the action Φ is almost free). ∙ Poincaré duality for intersection cohomology (the group G is compact...

Currently displaying 161 – 180 of 209