Manifolds of almost nonnegative curvature
We prove a Margulis’ Lemma à la Besson-Courtois-Gallot, for manifolds whose fundamental group is a nontrivial free product , without 2-torsion. Moreover, if is torsion-free we give a lower bound for the homotopy systole in terms of upper bounds on the diameter and the volume-entropy. We also provide examples and counterexamples showing the optimality of our assumption. Finally we give two applications of this result: a finiteness theorem and a volume estimate for reducible manifolds.
In this paper we consider compact, Riemannian manifolds M1, M2 each equipped with a oneparameter family of metrics g1(t), g2(t) satisfying the Ricci flow equation. Adopting the characterization of super-solutions to the Ricci flow developed by McCann-Topping, we define a super Ricci flow for a family of distance metrics defined on the disjoint union M1 ⊔ M2. In particular, we show such a super Ricci flow property holds provided the distance function between points in M1 and M2 is itself a super...