Page 1

Displaying 1 – 11 of 11

Showing per page

Obata’s Rigidity Theorem for Metric Measure Spaces

Christian Ketterer (2015)

Analysis and Geometry in Metric Spaces

We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.

On irreducible, infinite, nonaffine Coxeter groups

Dongwen Qi (2007)

Fundamenta Mathematicae

The following results are proved: The center of any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group is trivial; Any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group cannot be expressed as a product of two nontrivial subgroups. These two theorems imply a unique decomposition theorem for a class of Coxeter groups. We also prove that the orbit of each element other than the identity under the conjugation action in an irreducible, infinite, nonaffine...

On rank one symmetric space

Inkang Kim (2004/2005)

Séminaire de théorie spectrale et géométrie

In this paper we survey some recent results on rank one symmetric space.

On the asymptotic geometry of gravitational instantons

Vincent Minerbe (2010)

Annales scientifiques de l'École Normale Supérieure

We investigate the geometry at infinity of the so-called “gravitational instantons”, i.e. asymptotically flat hyperkähler four-manifolds, in relation with their volume growth. In particular, we prove that gravitational instantons with cubic volume growth are ALF, namely asymptotic to a circle fibration over a Euclidean three-space, with fibers of asymptotically constant length.

Optics in Croke-Kleiner Spaces

Fredric D. Ancel, Julia M. Wilson (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We explore the interior geometry of the CAT(0) spaces X α : 0 < α π / 2 , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications....

Currently displaying 1 – 11 of 11

Page 1