On alpha-Kenmotsu manifolds satisfying certain conditions.
On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric manifolds;...
In this paper we consider a method by which a skew-symmetric tensor field of type (1,2) in can be extended to the tensor bundle on the pure cross-section....
We prove that every compact balanced astheno-Kähler manifold is Kähler, and that there exists an astheno-Kähler structure on the product of certain compact normal almost contact metric manifolds.
For compact Kählerian manifolds, the holomorphic pseudosymmetry reduces to the local symmetry if additionally the scalar curvature is constant and the structure function is non-negative. Similarly, the holomorphic Ricci-pseudosymmetry reduces to the Ricci-symmetry under these additional assumptions. We construct examples of non-compact essentially holomorphically pseudosymmetric Kählerian manifolds. These examples show that the compactness assumption cannot be omitted in the above stated theorem....
We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian -natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.
A tangent bundle to a Riemannian manifold carries various metrics induced by a Riemannian tensor. We consider harmonic vector fields with respect to some of these metrics. We give a simple proof that a vector field on a compact manifold is harmonic with respect to the Sasaki metric on TM if and only if it is parallel. We also consider the metrics II and I + II on a tangent bundle (cf. [YI]) and harmonic vector fields generated by them.