On hypersurfaces in space forms satisfying particular curvature conditions of Tachibana type
For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show that a K-contact...
Let be a closed Riemannian manifold and the Euclidean metric. We show that for , is not conformal to a positive Einstein manifold. Moreover, is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, , for . These results are motivated by some recent questions on Yamabe constants.
We give a pinching theorem for a compact minimal generic submanifold with flat normal connection immersed in an odd-dimensional sphere with standard Sasakian structure.
Many authors have studied the geometry of submanifolds of Kaehlerian and Sasakian manifolds. On the other hand, David E. Blair has initiated the study of S-manifolds, which reduce, in particular cases, to Sasakian manifolds ([1, 2]). I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of S-manifolds. The purpose of the present paper is to study a special kind of such submanifolds, namely the normal CR-submanifolds. In Sections 1 and 2, we review basic formulas and definitions for...
The aim of this paper is to investigate para-Nordenian properties of the Sasakian metrics in the cotangent bundle.