Displaying 401 – 420 of 479

Showing per page

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold satisfying...

Standard homogeneous Einstein manifolds and Diophantine equations

Yurii G. Nikonorov, Eugene D. Rodionov (1996)

Archivum Mathematicum

Some new examples of standard homogeneous Einstein manifolds with semisimple transitive groups of motions and semisimple isotropy subgroups are constructed. For the construction of these examples the solutions of some systems of Diophantine equations are used.

Symmetries and Kähler-Einstein metrics

Claudio Arezzo, Alessandro Ghigi (2005)

Bollettino dell'Unione Matematica Italiana

We consider Fano manifolds M that admit a collection of finite automorphism groups G 1 , ... , G k , such that the quotients M / G i are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kähler-Einstein metric too.

Symplectic connections with parallel Ricci tensor

Michel Cahen, Simone Gutt, John Rawnsley (2000)

Banach Center Publications

A variational principle introduced to select some symplectic connections leads to field equations which, in the case of the Levi Civita connection of Kähler manifolds, are equivalent to the condition that the Ricci tensor is parallel. This condition, which is stronger than the field equations, is studied in a purely symplectic framework.

The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig, Travis Willse (2017)

Archivum Mathematicum

For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions of this operator...

Currently displaying 401 – 420 of 479