An integral formula for non-Codazzi tensors
An index theorem for the anti-self-dual deformation complex on anti-self-dual orbifolds with cyclic quotient singularities is proved. We present two applications of this theorem. The first is to compute the dimension of the deformation space of the Calderbank–Singer scalar-flat Kähler toric ALE spaces. A corollary of this is that, except for the Eguchi–Hanson metric, all of these spaces admit non-toric anti-self-dual deformations, thus yielding many new examples of anti-self-dual ALE spaces. For...
To any smooth compact manifold endowed with a contact structure and partially integrable almost CR structure , we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric on . We consider the asymptotic expansion, in powers of a special defining function, of the volume of with respect to and prove that the log term coefficient is independent of (and any choice of contact...
In this paper we prove that the maximum dimension of the Lie group of automorphisms of the Riemann–Cartan 4-dimensional manifold does not exceed 8, and if the Cartan connection is skew-symmetric or semisymmetric, the maximum dimension is equal to 7. In addition, in the case of the Riemann–Cartan -dimensional manifolds with semisymmetric connection the maximum dimension of the Lie group of automorphisms is equal to for any .
Recentemente, B.-Y. Chen ha introdotto una nuova serie di invarianti riemanniani per ogni varietà riemanniana. Ha anche ottenuto disuguaglianze strette per questi invarianti per sottovarietà di forme spaziali reali e complesse in funzione della loro curvatura media. Nel presente lavoro proviamo analoghe stime per gli invarianti per sottovarietà -totalmente reali e di contatto di una forma spaziale di Sasaki .
We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere . Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.
In the present paper we study characterizations of odd and even dimensional mixed generalized quasi-Einstein manifold. Next we prove that a mixed generalized quasi-Einstein manifold is a generalized quasi-Einstein manifold under a certain condition. Then we obtain three and four dimensional examples of mixed generalized quasi-Einstein manifold to ensure the existence of such manifold. Finally we establish the examples of warped product on mixed generalized quasi-Einstein manifold.