A class of symmetric spaces
Page 1 Next
Fabio Podestà (1989)
Bulletin de la Société Mathématique de France
Jong Taek Cho (1995)
Archivum Mathematicum
In the present paper we investigate a contact metric manifold satisfying (C) for any -geodesic , where is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any -geodesic . Also, we prove a structure theorem for a contact metric manifold with belonging to the -nullity distribution and satisfying (C) for any -geodesic .
Gregor Fels (1995)
Annales de l'institut Fourier
Let be a complex reductive group. We give a description both of domains and plurisubharmonic functions, which are invariant by the compact group, , acting on by (right) translation. This is done in terms of curvature of the associated Riemannian symmetric space . Such an invariant domain with a smooth boundary is Stein if and only if the corresponding domain is geodesically convex and the sectional curvature of its boundary fulfills the condition . The term is explicitly computable...
Patrick Eberlein, Jens Heber (1990)
Publications Mathématiques de l'IHÉS
S. Adams, L. Hernández (1994)
Geometric and functional analysis
Olivier Biquard, Rafe Mazzeo (2011)
Journal of the European Mathematical Society
We consider the Einstein deformations of the reducible rank two symmetric spaces of noncompact type. If is the product of any two real, complex, quaternionic or octonionic hyperbolic spaces, we prove that the family of nearby Einstein metrics is parametrized by certain new geometric structures on the Furstenberg boundary of .
Z.I. Szabó (1991)
Inventiones mathematicae
Adam Korányi, Fulvio Ricci (2010)
Colloquium Mathematicae
A relatively simple algebraic framework is given, in which all the compact symmetric spaces can be described and handled without distinguishing cases. We also give some applications and further results.
J. Alfredo Jiménez (1988)
Mathematische Zeitschrift
Jeffrey Hakim (1994)
Journal für die reine und angewandte Mathematik
Takaaki Nomura (1989)
Journal für die reine und angewandte Mathematik
Tshikunguila Tshikuna-Matamba (2005)
Extracta Mathematicae
It is known that L. Vanhecke, among other geometers, has studied curvature properties both on almost Hermitian and almost contact metric manifolds.The purpose of this paper is to interrelate these properties within the theory of almost contact metric submersions. So, we examine the following problem: Let f: M → B be an almost contact metric submersion. Suppose that the total space is a C(α)-manifold. What curvature properties do have the fibres or the base space?
Alfred Gray, Lieven Vanhecke (1979)
Časopis pro pěstování matematiky
Enrico Leuzinger (1995)
Inventiones mathematicae
R. Tribuzy, J.-H. Eschenburg (1998)
Manuscripta mathematica
Peter Sjögren (1988)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Toshiaki Hattori (1996)
Mathematische Zeitschrift
Oldrich Kowalski, Lieven Vanhecke (1982)
Mathematische Zeitschrift
Piotr Graczyk, Jean-Jacques Lœb (1994)
Bulletin de la Société Mathématique de France
A. Hulanicki, Eva Damek (1990)
Journal für die reine und angewandte Mathematik
Page 1 Next