On some generalisation of recurrent manifolds.
We give a lower bound for the bottom of the differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.
We study the absolute continuity of the convolution of two orbital measures on the symmetric space SO₀(p,q)/SO(p)×SO(q), q > p. We prove sharp conditions on X,Y ∈ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions. We show that the sharp criterion developed for SO₀(p,q)/SO(p)×SO(q) also serves for the spaces SU(p,q)/S(U(p)×U(q)) and Sp(p,q)/Sp(p)×Sp(q), q > p. We moreover apply our results to the study of...
We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the...
We introduce a type of non-flat Riemannian manifolds called weakly cyclic Ricci symmetric manifolds and study their geometric properties. The existence of such manifolds is shown by several non-trivial examples.