Displaying 261 – 280 of 319

Showing per page

Sur l'holonomie des variétés pseudo-riemanniennes de signature (2,2+n).

A. Ikemakhen (1999)

Publicacions Matemàtiques

In this paper, we determine a class of possible restricted holonomy groups for a non-irreducible indecomposable pseudoriemannian manifold with signature (2,2 + n). In particular, we deduce that which associated to symmetric spaces; and give some examples of such spaces. Finally, we construct some examples of metrics whose restricted holonomy groups are not closed.

The automorphism groups of foliations with transverse linear connection

Nina Zhukova, Anna Dolgonosova (2013)

Open Mathematics

The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.

The resolution of the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jérémie Szeftel (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

Currently displaying 261 – 280 of 319