Displaying 401 – 420 of 511

Showing per page

Singular Poisson-Kähler geometry of certain adjoint quotients

Johannes Huebschmann (2007)

Banach Center Publications

The Kähler quotient of a complex reductive Lie group relative to the conjugation action carries a complex algebraic stratified Kähler structure which reflects the geometry of the group. For the group SL(n,ℂ), we interpret the resulting singular Poisson-Kähler geometry of the quotient in terms of complex discriminant varieties and variants thereof.

Some critical almost Kähler structures

Takashi Oguro, Kouei Sekigawa (2008)

Colloquium Mathematicae

We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional λ , μ ( J , g ) = M ( λ τ + μ τ * ) d M g with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of - 1 , 1 if and only if (J,g) is a Kähler structure on M.

Stability under deformations of Hermite-Einstein almost Kähler metrics

Mehdi Lejmi (2014)

Annales de l’institut Fourier

On a 4 -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.

Currently displaying 401 – 420 of 511