Injectivité de la transformation de Radon sur les grassmanniennes
We review recent work on the local geometry and optimal regularity of Lorentzian manifolds with bounded curvature. Our main results provide an estimate of the injectivity radius of an observer, and a local canonical foliations by CMC (Constant Mean Curvature) hypersurfaces, together with spatially harmonic coordinates. In contrast with earlier results based on a global bound for derivatives of the curvature, our method requires only a sup-norm bound on the curvature near the given observer.
Some properties of secantoptics of ovals defined by Skrzypiec in 2008 were proved by Mozgawa and Skrzypiec in 2009. In this paper we generalize to this case results obtained by Cieślak, Miernowski and Mozgawa in 1996 and derive an integral formula for an annulus bounded by a given oval and its secantoptic. We describe the change of the area bounded by a secantoptic and find the differential equation for this function. We finish with some examples illustrating the above results.
We obtain a series of new integral formulae for a distribution of arbitrary codimension (and its orthogonal complement) given on a closed Riemannian manifold, which start from the formula by Walczak (1990) and generalize ones for foliations by several authors. For foliations on space forms our formulae reduce to the classical type formulae by Brito-Langevin-Rosenberg (1981) and Brito-Naveira (2000). The integral formulae involve the conullity tensor of a distribution, and certain components of the...
In this paper, we study closed -maximal spacelike hypersurfaces in anti-de Sitter space with two distinct principal curvatures and give some integral formulas about these hypersurfaces.