A new curvature invariant and entropy of geodesic flow.
P. Sarnak, R. Osserman (1984)
Inventiones mathematicae
A. Berard, W. Nitka (1974)
Fundamenta Mathematicae
Fernández, Marisa (1987)
Portugaliae mathematica
K. Guruprasad, Shrawan Kumar (1990)
Compositio Mathematica
Szilasi, József, Vincze, Csaba (2000)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Katsumi Nomizu, Takeshi Sasaki (1991)
Manuscripta mathematica
C. Viterbo (1990)
Inventiones mathematicae
Oprea, Teodor (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Vincze, Csaba (2005)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Monterde, J. (2004)
Portugaliae Mathematica. Nova Série
P. Topiwala (1987)
Inventiones mathematicae
P. Topiwala (1987)
Inventiones mathematicae
Solanilla, Leonardo (2007)
Balkan Journal of Geometry and its Applications (BJGA)
Faen Wu, Xinnuan Zhao (2012)
Communications in Mathematics
In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let and denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if is compact and locally conformally flat and is the critical point of the functional where
K. Shiohama, Y. Otsu, T. Yamaguchi (1989)
Inventiones mathematicae
Leung-Fu Cheung (1991)
Manuscripta mathematica
Lenka Zalabová (2014)
Open Mathematics
We construct a non-homogeneous contact projective structure which is symmetric from the point of view of parabolic geometries.
Frederico Xavier (1985)
Commentarii mathematici Helvetici
F.J. Pedit (1988)
Commentarii mathematici Helvetici
Olivier Biquard, Rafe Mazzeo (2011)
Journal of the European Mathematical Society
We consider the Einstein deformations of the reducible rank two symmetric spaces of noncompact type. If is the product of any two real, complex, quaternionic or octonionic hyperbolic spaces, we prove that the family of nearby Einstein metrics is parametrized by certain new geometric structures on the Furstenberg boundary of .