Displaying 321 – 340 of 5550

Showing per page

A unified approach to compact symmetric spaces of rank one

Adam Korányi, Fulvio Ricci (2010)

Colloquium Mathematicae

A relatively simple algebraic framework is given, in which all the compact symmetric spaces can be described and handled without distinguishing cases. We also give some applications and further results.

A universal bound for lower Neumann eigenvalues of the Laplacian

Wei Lu, Jing Mao, Chuanxi Wu (2020)

Czechoslovak Mathematical Journal

Let M be an n -dimensional ( n 2 ) simply connected Hadamard manifold. If the radial Ricci curvature of M is bounded from below by ( n - 1 ) k ( t ) with respect to some point p M , where t = d ( · , p ) is the Riemannian distance on M to p , k ( t ) is a nonpositive continuous function on ( 0 , ) , then the first n nonzero Neumann eigenvalues of the Laplacian on the geodesic ball B ( p , l ) , with center p and radius 0 < l < , satisfy 1 μ 1 + 1 μ 2 + + 1 μ n l n + 2 ( n + 2 ) 0 l f n - 1 ( t ) d t , where f ( t ) is the solution to f ' ' ( t ) + k ( t ) f ( t ) = 0 on ( 0 , ) , f ( 0 ) = 0 , f ' ( 0 ) = 1 .

A Useful Characterization of Some Real Hypersurfaces in a Nonflat Complex Space Form

Takehiro Itoh, Sadahiro Maeda (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We characterize totally η-umbilic real hypersurfaces in a nonflat complex space form M̃ₙ(c) (= ℂPⁿ(c) or ℂHⁿ(c)) and a real hypersurface of type (A₂) of radius π/(2√c) in ℂPⁿ(c) by observing the shape of some geodesics on those real hypersurfaces as curves in the ambient manifolds (Theorems 1 and 2).

Currently displaying 321 – 340 of 5550