Stratifications adapted to finite families of differential 1-forms (Pfaffian geometry - Part one).
A first part of a systematic presentation of Pfaffian geometry is given.
A first part of a systematic presentation of Pfaffian geometry is given.
In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter...
Nous étudions dans cet article quelques propriétés des feuilletages (transversalement) kähleriens sur une variété compacte lorsque la forme de Ricci transverse est « suffisamment » négative. Nous établissons plus précisément que l’algébre de Lie du pseudo-groupe d’holonomie est semi-simple. Il s’agit en fait dune version feuilletée d’un résultat dû à Nadel relatif au groupe d’automorphismes de certaines variétés complexes compactes. Ceci fournit un critére qui assure que les feuilles d’un feuilletage...
In this paper we generalize the classical structure equations of Riemannian geometry to generalized Finsler manifolds.
Some properties of the range on an open leaf of some codimension-one foliation are shown. They are different from the known properties of the distance of leaves. They imply that leaf is of fibred type over a complete Riemannian manifold with boundary, as well that there exists some vector field on . If is parallel then is diffeomorphic to and has non-positive curvature.
Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension or are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.
, that is to say, Lorentzian manifolds with vanishing second derivative of the curvature tensor , are characterized by several geometric properties, and explicitly presented. Locally, they are a product where each factor is uniquely determined as follows: is a Riemannian symmetric space and is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., at some point), the curvature tensor turns out to...
On donne une nouvelle définition des connexions non linéaires et, plus généralement des connexions non homogènes, en faisant intervenir la structure presque tangente naturelle du fibré tangent.Ceci permet d’établir intrinsèquement les équations différentielles qui lient une connexion à sa gerbe.Ce formalisme est ensuite appliqué à l’étude des connexions sur une variété finslérienne et sur un système mécanique : on obtient dans le cas finslérien une généralisation du “théorème fondamental de la géométrie...