Displaying 741 – 760 of 5550

Showing per page

Codimension one foliations on complex tori

Marco Brunella (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove a structure theorem for codimension one singular foliations on complex tori, from which we deduce some dynamical consequences.

Codimension one minimal foliations and the fundamental groups of leaves

Tomoo Yokoyama, Takashi Tsuboi (2008)

Annales de l’institut Fourier

Let be a transversely orientable transversely real-analytic codimension one minimal foliation of a paracompact manifold M . We show that if the fundamental group of each leaf of is isomorphic to Z , then is without holonomy. We also show that if π 2 ( M ) 0 and the fundamental group of each leaf of is isomorphic to Z k ( k Z 0 ), then is without holonomy.

Codimension one symplectic foliations.

Omegar Calvo, Vicente Muñoz, Francisco Presas (2005)

Revista Matemática Iberoamericana

We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.

Collapse of warped submersions

Szymon M. Walczak (2006)

Annales Polonici Mathematici

We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds ( M , g M ) and ( B , g B ) in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric g f on M by g f | × g M | × , g f | × T M ̂ f ̂ ² g M | × T M ̂ , where and denote the bundles of horizontal and vertical vectors. The manifold ( M , g f ) obtained that way is called a warped submersion. The function f is called a warping function. We show a necessary...

Currently displaying 741 – 760 of 5550