Displaying 61 – 80 of 173

Showing per page

Metrics in the sphere of a C*-module

Esteban Andruchow, Alejandro Varela (2007)

Open Mathematics

Given a unital C*-algebra 𝒜 and a right C*-module 𝒳 over 𝒜 , we consider the problem of finding short smooth curves in the sphere 𝒮 𝒳 = x ∈ 𝒳 : 〈x, x〉 = 1. Curves in 𝒮 𝒳 are measured considering the Finsler metric which consists of the norm of 𝒳 at each tangent space of 𝒮 𝒳 . The initial value problem is solved, for the case when 𝒜 is a von Neumann algebra and 𝒳 is selfdual: for any element x 0 ∈ 𝒮 𝒳 and any tangent vector ν at x 0, there exists a curve γ(t) = e tZ(x 0), Z ∈ 𝒜 ( 𝒳 ) , Z* = −Z and ∥Z∥ ≤ π, such...

Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

Frédéric Campana, Henri Guenancia, Mihai Păun (2013)

Annales scientifiques de l'École Normale Supérieure

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.

Metrics with homogeneous geodesics on flag manifolds

Dimitri V. Alekseevsky, Andreas Arvanitoyeorgos (2002)

Commentationes Mathematicae Universitatis Carolinae

A geodesic of a homogeneous Riemannian manifold ( M = G / K , g ) is called homogeneous if it is an orbit of an one-parameter subgroup of G . In the case when M = G / H is a naturally reductive space, that is the G -invariant metric g is defined by some non degenerate biinvariant symmetric bilinear form B , all geodesics of M are homogeneous. We consider the case when M = G / K is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group G , and we give a simple necessary condition that M admits a non-naturally reductive...

Métriques kählériennes à courbure scalaire constante : unicité, stabilité

Olivier Biquard (2004/2005)

Séminaire Bourbaki

Un des problèmes les plus intéressants de la géométrie différentielle complexe consiste à comprendre les classes de Kähler de variétés complexes admettant des métriques à courbure scalaire constante. La question de l’unicité a été récemment résolue par Donaldson, Mabuchi, Chen–Tian. Des liens forts avec la stabilité algébrique des variétés ont été mis en évidence. L’exposé s’attachera à exposer les idées nouvelles qui ont mené à ces résultats.

Métriques riemanniennes holomorphes en petite dimension

Sorin Dumitrescu (2001)

Annales de l’institut Fourier

Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension 3 . Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension 3 .

Currently displaying 61 – 80 of 173