Metric rigidity of crystallographic groups.
Given a unital C*-algebra and a right C*-module over , we consider the problem of finding short smooth curves in the sphere = x ∈ : 〈x, x〉 = 1. Curves in are measured considering the Finsler metric which consists of the norm of at each tangent space of . The initial value problem is solved, for the case when is a von Neumann algebra and is selfdual: for any element x 0 ∈ and any tangent vector ν at x 0, there exists a curve γ(t) = e tZ(x 0), Z ∈ , Z* = −Z and ∥Z∥ ≤ π, such...
We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields.
A geodesic of a homogeneous Riemannian manifold is called homogeneous if it is an orbit of an one-parameter subgroup of . In the case when is a naturally reductive space, that is the -invariant metric is defined by some non degenerate biinvariant symmetric bilinear form , all geodesics of are homogeneous. We consider the case when is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group , and we give a simple necessary condition that admits a non-naturally reductive...
Un des problèmes les plus intéressants de la géométrie différentielle complexe consiste à comprendre les classes de Kähler de variétés complexes admettant des métriques à courbure scalaire constante. La question de l’unicité a été récemment résolue par Donaldson, Mabuchi, Chen–Tian. Des liens forts avec la stabilité algébrique des variétés ont été mis en évidence. L’exposé s’attachera à exposer les idées nouvelles qui ont mené à ces résultats.
Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension . Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension .