Displaying 861 – 880 of 5550

Showing per page

Complex sprays and complex curves.

Colum Watt (2001)

Revista Matemática Complutense

After defining what is meant by a complex spray X on a complex manifold M, we introduce the notion of a spray complex curve associated to X. Several equivalent formulations are derived and we give necessary and sufficient conditions for M to admit spray complex curves for X through each point and in each direction. Refinements of this result are then derived for some special cases, for example when X is the horizontal radial vector field associated to a complex Finsler metric.

Complex structures on S O g M

Tommaso Pacini (1999)

Bollettino dell'Unione Matematica Italiana

Data una varietà Riemanniana orientata M , g , il fibrato principale S O g M di basi ortonormali positive su M , g ha una parallelizzazione canonica dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione di una classe molto naturale di strutture quasi-complesse su M , g . Dopo le necessarie definizioni, discutiamo qui l'integrabilità di queste strutture, esprimendola in termini della struttura Riemanniana g .

Composition of some singular Fourier integral operators and estimates for restricted X -ray transforms

Allan Greenleaf, Gunther Uhlmann (1990)

Annales de l'institut Fourier

We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations C ( T * X 0 ) × ( T * Y 0 ) . These canonical relations, which arise naturally in integral geometry, are such that π : C T * Y is a Whitney fold and ρ : C T * X is a blow-down mapping. If A I m ( C ) , B I m ' ( C t ) , then B A I m + m ' , 0 ( Δ , Λ ) a class of pseudodifferential operators with singular symbols. From this follows L 2 boundedness of A with a loss of 1/4 derivative.

Computational studies of conserved mean-curvature flow

Miroslav Kolář, Michal Beneš, Daniel Ševčovič (2014)

Mathematica Bohemica

The paper presents the results of numerical solution of the evolution law for the constrained mean-curvature flow. This law originates in the theory of phase transitions for crystalline materials and describes the evolution of closed embedded curves with constant enclosed area. It is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is solved numerically and several computational studies are...

Computational studies of non-local anisotropic Allen-Cahn equation

Michal Beneš, Shigetoshi Yazaki, Masato Kimura (2011)

Mathematica Bohemica

The paper presents the results of numerical solution of the Allen-Cahn equation with a non-local term. This equation originally mentioned by Rubinstein and Sternberg in 1992 is related to the mean-curvature flow with the constraint of constant volume enclosed by the evolving curve. We study this motion approximately by the mentioned PDE, generalize the problem by including anisotropy and discuss the computational results obtained.

Currently displaying 861 – 880 of 5550