Displaying 81 – 100 of 212

Showing per page

Integration in a dynamical stochastic geometric framework

Giacomo Aletti, Enea G. Bongiorno, Vincenzo Capasso (2011)

ESAIM: Probability and Statistics

Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...

Integration in a dynamical stochastic geometric framework

Giacomo Aletti, Enea G. Bongiorno, Vincenzo Capasso (2012)

ESAIM: Probability and Statistics

Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...

Interior estimates for solutions of Abreu's equation.

Simon K. Donaldson (2005)

Collectanea Mathematica

This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.

Interpolation of Banach spaces, differential geometry and differential equations.

Stephen Semmes (1988)

Revista Matemática Iberoamericana

In recent years the study of interpolation of Banach spaces has seen some unexpected interactions with other fields. (...) In this paper I shall discuss some more interactions of interpolation theory with the rest of mathematics, beginning with some joint work with Coifman [CS]. Our basic idea was to look for the methods of interpolation that had interesting PDE's arising as examples.

Intrinsic geometric on the class of probability densities and exponential families.

Henryk Gzyl, Lázaro Recht (2007)

Publicacions Matemàtiques

We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...

Currently displaying 81 – 100 of 212