Intrinsic measures complex manifolds
I. Graham (1986)
Matematički Vesnik
Shing Tung Yau (1974)
Mathematische Annalen
Jacques Lafontaine (1991)
Séminaire de théorie spectrale et géométrie
Laurent Guillopé (1988/1989)
Séminaire de théorie spectrale et géométrie
Constantin Vernicos (2004/2005)
Séminaire de théorie spectrale et géométrie
J. P. Bourguignon (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
Colette Anné (1986/1987)
Séminaire de théorie spectrale et géométrie
E. Combet (1986)
Publications du Département de mathématiques (Lyon)
Fujii, Kazuyuki (2002)
Journal of Applied Mathematics
Roberta Alessandroni (2008/2009)
Séminaire de théorie spectrale et géométrie
This is a short overview on the most classical results on mean curvature flow as a flow of smooth hypersurfaces. First of all we define the mean curvature flow as a quasilinear parabolic equation and give some easy examples of evolution. Then we consider the M.C.F. on convex surfaces and sketch the proof of the convergence to a round point. Some interesting results on the M.C.F. for entire graphs are also mentioned. In particular when we consider the case of dimension one, we can compute the equation...
Libermann, Paulette (1996)
Archivum Mathematicum
Paulette Libermann (1997)
Archivum Mathematicum
Oldřich Kowalski, Masami Sekizawa (2008)
Archivum Mathematicum
In this paper we prove that each -natural metric on a linear frame bundle over a Riemannian manifold is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define -natural metrics on the orthonormal frame bundle and we prove the same invariance result as above for . Hence we see that, over a space of constant sectional curvature, the bundle with an arbitrary -natural metric is locally homogeneous.
François Rouvière (1991)
Compositio Mathematica
François Rouvière (1990)
Compositio Mathematica
Marc De Wilde, Pierre B. A. Lecomte, Dominique Mélotte (1985)
Commentationes Mathematicae Universitatis Carolinae
Indranil Biswas, Andrei Teleman (2014)
Open Mathematics
Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when...
Fulton B. Gonzalez (1990)
Mathematische Annalen
H.M. Reimann (1982)
Commentarii mathematici Helvetici
Edoardo Vesentini (1982)
Banach Center Publications