Deformation of Kähler matrics to Kähler-Eisenstein metrics on compact Kähler manifolds.
Fondements de la théorie des -produits. Notion de -produit de Vey; tout -produit est équivalent à un -produit de Vey. Sur toute variété symplectique paracompacte telle que , il existe des -produits de Vey. Caractérisation des algèbres de Lie engendrées par antisymétrisation d’un -produit (éventuellement faible); ce sont à une équivalence près, les algèbres de Lie de Vey.On considère les variétés symplectiques sur lesquelles opère, par symplectomorphismes, un groupe de Lie . Si admet...
Nous démontrons que toute 2-forme symétrique sur un espace projectif complexe de dimension , muni de sa métrique canonique , qui est d’intégrale nulle sur les géodésiques de , est une dérivée de Lie de la métrique .
We construct biharmonic non-harmonic maps between Riemannian manifolds and by first making the ansatz that be a harmonic map and then deforming the metric on by to render biharmonic, where is a smooth function with gradient of constant norm on and . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
Tubular neighborhoods play an important role in modern differential topology. The main aim of the paper is to apply these constructions to geometry of structures on Riemannian manifolds. Deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold are considered in section 1. In section 2, this approach is used to obtain a Kählerian structure on the corresponding normal tubular neighborhood of the null section in the tangent bundle TM of a smooth manifold...
Let M be a Riemannian manifold equipped with two complementary orthogonal distributions D and D ⊥. We introduce the conformal flow of the metric restricted to D with the speed proportional to the divergence of the mean curvature vector H, and study the question: When the metrics converge to one for which D enjoys a given geometric property, e.g., is harmonic, or totally geodesic? Our main observation is that this flow is equivalent to the heat flow of the 1-form dual to H, provided the initial 1-form...
Nous étudions l’ensemble Conf des immersions conformes entre deux variétés pseudo-riemanniennes et . Nous caractérisons notamment l’adhérence de Conf dans l’espace des applications continues , et décrivons quelques propriétés géométriques de lorsque cette adhérence est non triviale.