Displaying 121 – 140 of 173

Showing per page

Minimal tori in S4.

U. Pinkall, D. Ferus, I. Sterling (1992)

Journal für die reine und angewandte Mathematik

Minimizing movements for dislocation dynamics with a mean curvature term

Nicolas Forcadel, Aurélien Monteillet (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We prove existence of minimizing movements for the dislocation dynamics evolution law of a propagating front, in which the normal velocity of the front is the sum of a non-local term and a mean curvature term. We prove that any such minimizing movement is a weak solution of this evolution law, in a sense related to viscosity solutions of the corresponding level-set equation. We also prove the consistency of this approach, by showing that any minimizing movement coincides with the smooth evolution...

Minoration de la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord

Daniel Meyer (1986)

Annales de l'institut Fourier

On établit une minoration pour la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord; la nécessité des bornes géométriques utilisées est illustrée par une série d’exemples. Cette approche prolonge celle de Li-Yau, qui était limitée à l’étude du cas où le bord est convexe.

Minoration du spectre des variétés hyperboliques de dimension 3

Pierre Jammes (2012)

Bulletin de la Société Mathématique de France

Soit M une variété hyperbolique compacte de dimension 3, de diamètre  d et de volume V . Si on note μ i ( M ) la i -ième valeur propre du laplacien de Hodge-de Rham agissant sur les 1-formes coexactes de M , on montre que μ 1 ( M ) c d 3 e 2 k d et μ k + 1 ( M ) c d 2 , où c > 0 est une constante ne dépendant que de V , et k est le nombre de composantes connexes de la partie mince de M . En outre, on montre que pour toute 3-variété hyperbolique M de volume fini avec cusps, il existe une suite M i de remplissages compacts de M , de diamètre d i + telle que et μ 1 ( M i ) c d i 2 .

Mixed 3-Sasakian structures and curvature

Angelo V. Caldarella, Anna Maria Pastore (2009)

Annales Polonici Mathematici

We deal with two classes of mixed metric 3-structures, namely the mixed 3-Sasakian structures and the mixed metric 3-contact structures. First, we study some properties of the curvature of mixed 3-Sasakian structures. Then we prove the identity between the class of mixed 3-Sasakian structures and the class of mixed metric 3-contact structures.

Modular vector fields and Batalin-Vilkovisky algebras

Yvette Kosmann-Schwarzbach (2000)

Banach Center Publications

We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose d P -cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber...

Currently displaying 121 – 140 of 173