Displaying 121 – 140 of 467

Showing per page

The gap theorems for some extremal submanifolds in a unit sphere

Xi Guo and Lan Wu (2015)

Communications in Mathematics

Let M be an n -dimensional submanifold in the unit sphere S n + p , we call M a k -extremal submanifold if it is a critical point of the functional M ρ 2 k d v . In this paper, we can study gap phenomenon for these submanifolds.

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial result obtained...

Currently displaying 121 – 140 of 467