Displaying 21 – 40 of 220

Showing per page

Real hypersurfaces in a complex projective space with pseudo- 𝔻 -parallel structure Jacobi operator

Hyunjin Lee, Juan de Dios Pérez, Young Jin Suh (2010)

Czechoslovak Mathematical Journal

We introduce the new notion of pseudo- 𝔻 -parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.

Real hypersurfaces in complex space forms concerned with the local symmetry

Seon Mi Lyu, Juan de Dios Pérez, Young Jin Suh (2007)

Czechoslovak Mathematical Journal

This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface M in complex space form M m ( 4 ϵ ) . In the second, we give a complete classification of real hypersurfaces in M m ( 4 ϵ ) which satisfy the above geometric facts.

Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II

Hyunjin Lee, Seonhui Kim, Young Jin Suh (2014)

Czechoslovak Mathematical Journal

Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces M of Type ( A ) in complex two plane Grassmannians G 2 ( m + 2 ) with a commuting condition between the shape operator A and the structure tensors φ and φ 1 for M in G 2 ( m + 2 ) . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator A and a new operator φ φ 1 induced by two structure tensors φ and φ 1 . That is, this commuting shape operator is given by φ φ 1 A = A φ φ 1 . Using this condition, we prove that...

Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition

Hyunjin Lee, Seonhui Kim, Young Jin Suh (2012)

Czechoslovak Mathematical Journal

In this paper, first we introduce a new notion of commuting condition that φ φ 1 A = A φ 1 φ between the shape operator A and the structure tensors φ and φ 1 for real hypersurfaces in G 2 ( m + 2 ) . Suprisingly, real hypersurfaces of type ( A ) , that is, a tube over a totally geodesic G 2 ( m + 1 ) in complex two plane Grassmannians G 2 ( m + 2 ) satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in G 2 ( m + 2 ) satisfying the commuting condition. Finally we get a characterization of Type ( A ) in terms of such commuting...

Real hypersurfaces with constant totally real bisectional curvature in complex space forms

Miguel Ortega, Juan de Dios Pérez, Young Jin Suh (2006)

Czechoslovak Mathematical Journal

In this paper we classify real hypersurfaces with constant totally real bisectional curvature in a non flat complex space form M m ( c ) , c 0 as those which have constant holomorphic sectional curvature given in [6] and [13] or constant totally real sectional curvature given in [11].

Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties

Robert J. Berman, Bo Berndtsson (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

We show, using a direct variational approach, that the second boundary value problem for the Monge-Ampère equation in n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P . Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties ( X , Δ ) saying that ( X , Δ ) admits a (singular) Kähler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and...

Réalisations de surfaces hyperboliques complètes dans H 3

Jean-Marc Schlenker (1998)

Annales de l'institut Fourier

Soit K 0 ] - 1 , 0 [ ; chaque métrique complète à courbure K 0 sur la sphère à N 1 trous admet une unique réalisation comme métrique induite sur une surface plongée dans H 3 dont le bord à l’infini est une réunion disjointe de cercles. De manière duale, chaque métrique complète à courbure K ˜ 0 ] - , 0 [ sans géodésique fermée de longueur L 2 π se réalise de manière unique comme troisième forme fondamentale d’une surface plongée dont le bord à l’infini est une réunion de cercles.

Currently displaying 21 – 40 of 220