Displaying 281 – 300 of 790

Showing per page

Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects

Claude Roger (2009)

Archivum Mathematicum

We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.

Global finite generating functions for field theory

Franco Cardin (2003)

Banach Center Publications

We introduce an infinite-dimensional version of the Amann-Conley-Zehnder reduction for a class of boundary problems related to nonlinear perturbed elliptic operators with symmetric derivative. We construct global generating functions with finite auxiliary parameters, describing the solutions as critical points in a finite-dimensional space.

Graph selectors and viscosity solutions on Lagrangian manifolds

David McCaffrey (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Let Λ be a Lagrangian submanifold of T * X for some closed manifold X. Let S ( x , ξ ) be a generating function for Λ which is quadratic at infinity, and let W(x) be the corresponding graph selector for Λ , in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset X 0 X of measure zero such that W is Lipschitz continuous on X, smooth on X X 0 and ( x , W / x ( x ) ) Λ for X X 0 . Let H(x,p)=0 for ( x , p ) Λ . Then W is a classical solution to H ( x , W / x ( x ) ) = 0 on X X 0 and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational...

Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities

Ikuo Satake, Atsushi Takahashi (2011)

Annales de l’institut Fourier

We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.

Handle attaching in symplectic homology and the Chord Conjecture

Kai Cieliebak (2002)

Journal of the European Mathematical Society

Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a haracteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant 1 . More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies...

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent Bruasse, Andrei Teleman (2005)

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Harmonic maps and Riemannian submersions between manifolds endowed with special structures

Stere Ianuş, Gabriel Eduard Vîlcu, Rodica Cristina Voicu (2011)

Banach Center Publications

It is well known that Riemannian submersions are of interest in physics, owing to their applications in the Yang-Mills theory, Kaluza-Klein theory, supergravity and superstring theories. In this paper we give a survey of harmonic maps and Riemannian submersions between manifolds equipped with certain geometrical structures such as almost Hermitian structures, contact structures, f-structures and quaternionic structures. We also present some new results concerning holomorphic maps and semi-Riemannian...

Hierarchy of integrable geodesic flows.

Peter Topalov (2000)

Publicacions Matemàtiques

A family of integrable geodesic flows is obtained. Any such a family corresponds to a pair of geodesically equivalent metrics.

Higher symmetries of the Laplacian via quantization

Jean-Philippe Michel (2014)

Annales de l’institut Fourier

We develop a new approach, based on quantization methods, to study higher symmetries of invariant differential operators. We focus here on conformally invariant powers of the Laplacian over a conformally flat manifold and recover results of Eastwood, Leistner, Gover and Šilhan. In particular, conformally equivariant quantization establishes a correspondence between the algebra of Hamiltonian symmetries of the null geodesic flow and the algebra of higher symmetries of the conformal Laplacian. Combined...

Currently displaying 281 – 300 of 790