Prym Varieties and the Geodesic Flow on SO(n).
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric -contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric -contact metric manifolds.
In this article we use the expansion for biquantization described in [7] for the case of symmetric spaces. We introduce a function of two variables for any symmetric pairs. This function has an expansion in terms of Kontsevich’s diagrams. We recover most of the known results though in a more systematic way by using some elementary properties of this function. We prove that Cattaneo and Felder’s star product coincides with Rouvière’s for any symmetric pairs. We generalize some of Lichnerowicz’s...
In this paper we show that the multiplicities of holomorphic discrete series representations relative to reductive subgroups satisfy the credo “quantization commutes with reduction”.
We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson pencils and...
In this paper we recall the concept of Hamiltonian system in the canonical and Poisson settings. We will discuss the quantization of the Hamiltonian systems in the Poisson context, using formal deformation quantization and quantum group theories.
We describe how the constructions of quantum homogeneous spaces using infinitesimal invariance and quantum coisotropic subgroups are related. As an example we recover the quantum 4-sphere of [2] through infinitesimal invariance with respect to .