Displaying 681 – 700 of 790

Showing per page

The BV-algebra of a Jacobi manifold

Izu Vaisman (2000)

Annales Polonici Mathematici

We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a Jacobi manifold has a canonical exact generator, and discuss duality between its homology and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over Poisson manifolds.

The degenerate C. Neumann system I: symmetry reduction and convexity

Holger Dullin, Heinz Hanßmann (2012)

Open Mathematics

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ,...

The discriminant and oscillation lengths for contact and Legendrian isotopies

Vincent Colin, Sheila Sandon (2015)

Journal of the European Mathematical Society

We define an integer-valued non-degenerate bi-invariant metric (the discriminant metric) on the universal cover of the identity component of the contactomorphism group of any contact manifold. This metric has a very simple geometric definition, based on the notion of discriminant points of contactomorphisms. Using generating functions we prove that the discriminant metric is unbounded for the standard contact structures on 2 n × S 1 and P 2 n + 1 . On the other hand we also show by elementary arguments that the...

The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

Jan Kubarski (2006)

Czechoslovak Mathematical Journal

This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either or s l ( 2 , ) or so ( 3 ) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to n + 1 , where n is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For -Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf...

The geography of simply-connected symplectic manifolds

Mi Sung Cho, Yong Seung Cho (2003)

Czechoslovak Mathematical Journal

By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain × is covered by minimal, simply connected, symplectic 4-manifolds.

The geometry of a closed form

Marisa Fernández, Raúl Ibáñez, Manuel de León (1998)

Banach Center Publications

It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on G 2 -manifolds and fundamental 4-forms in quaternionic manifolds are discussed.

The infinitesimal counterpart of tangent presymplectic groupoids of higher order

P.M. Kouotchop Wamba, A. MBA (2018)

Archivum Mathematicum

Let G , ω be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, ( T r G , ω c ) where T r G is the tangent groupoid of higher order and ω c is the complete lift of higher order of presymplectic form ω .

Currently displaying 681 – 700 of 790