Displaying 161 – 180 of 790

Showing per page

Correspondances géodésiques entre les surfaces euclidiennes à singularités coniques.

Mohammed Mostefa Mesmoudi (1996)

Revista Matemática Iberoamericana

A. J. Montesinos has shown that a geodesic correspondence between two complete Riemannian manifolds with transitive topological geodesic flow is a homothety. In this paper we prove a similar result for a conformal geodesic correspondence between two singular flat surfaces with conical singularities and negative concentrated curvature.

Curiosités Lagrangiennes en dimension 4

Denis Sauvaget (2004)

Annales de l’institut Fourier

Dans ce texte, on définit, pour les immersions lagrangiennes de variétés fermées dans n , une notion d’aire symplectique enlacée. Puis on construit, dans le cas n = 2 , un certain nombre de surfaces lagrangiennes enlaçant une aire infinie. Dans le cas des surfaces exactes, elles ont le minimum de points doubles possible permis par la théorie (sauf la sphère), c’est-à-dire moins que prévu par quelques conjectures.

De Rham cohomology and homotopy Frobenius manifolds

Vladimir Dotsenko, Sergey Shadrin, Bruno Vallette (2015)

Journal of the European Mathematical Society

We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.

Deformation coproducts and differential maps

R. L. Hudson, S. Pulmannová (2008)

Studia Mathematica

Let 𝒯 be the Itô Hopf algebra over an associative algebra 𝓛 into which the universal enveloping algebra 𝓤 of the commutator Lie algebra 𝓛 is embedded as the subalgebra of symmetric tensors. We show that there is a one-to-one correspondence between deformations Δ[h] of the coproduct in 𝒯 and pairs (d⃗[h],d⃖[h]) of right and left differential maps which are deformations of the differential maps for 𝒯 [Hudson and Pulmannová, J. Math. Phys. 45 (2004)]. Corresponding to the multiplicativity and...

Deformation on phase space.

Oscar Arratia, M.ª Angeles Martín Mínguez, María Angeles del Olmo (2002)

RACSAM

El trabajo que presentamos constituye una revisión de varios procedimientos de cuantización basados en un espacio de fases clásico M. Estos métodos consideran a la mecánica cuántica como una "deformación" de la mecánica clásica por medio de la "transformación" del álgebra conmutativa C∞(M) en una nueva álgebra no conmutativa C∞(M)ħ. Todas estas ideas conducen de modo natural a los grupos cuánticos como deformación (o cuantización en un sentido amplio) de los grupos de Poisson-Lie, lo cual también...

Deformation quantization and Borel's theorem in locally convex spaces

Miroslav Engliš, Jari Taskinen (2007)

Studia Mathematica

It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth functions...

Deformation Theory (Lecture Notes)

M. Doubek, Martin Markl, Petr Zima (2007)

Archivum Mathematicum

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last...

Déformations de flots d'Anosov et de groupes fuchsiens

Étienne Ghys (1992)

Annales de l'institut Fourier

Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe C . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.

Deformations of Batalin-Vilkovisky algebras

Olga Kravchenko (2000)

Banach Center Publications

We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra ( L -algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a...

Currently displaying 161 – 180 of 790