Countable small rank and cardinal invariants
We investigate the role that weak forms of the axiom of choice play in countable Tychonoff products, as well as countable disjoint unions, of Loeb and selective metric spaces.
We prove that if K is a compact space and the space P(K × K) of regular probability measures on K × K has countable tightness in its weak* topology, then L₁(μ) is separable for every μ ∈ P(K). It has been known that such a result is a consequence of Martin's axiom MA(ω₁). Our theorem has several consequences; in particular, it generalizes a theorem due to Bourgain and Todorčević on measures on Rosenthal compacta.
A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each .
By studying algebra homomorphisms, which act as point evaluations on each countable subset, we obtain improved results on the question when all algebra homomorphisms are point evaluations.
We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a . In addition some nonperfect spaces with σ-disjoint bases are constructed.
In this work we study countably z-compact spaces and z-Lindelof spaces. Several new properties of them are given. It is proved that every countably z-compact space is pseuodocompact (a space on which every real valued continuous function is bounded). Spaces which are countably z-compact but not countably compact are given. It is proved that a space is countably z-compact iff every countable z-closed set is compact. Characterizations of countably z-compact and z-Lindelof spaces by multifunctions...
For a transfinite cardinal κ and i ∈ 0,1,2 let be the class of all linearly ordered spaces X of size κ such that X is totally disconnected when i = 0, the topology of X is generated by a dense linear ordering of X when i = 1, and X is compact when i = 2. Thus every space in ℒ₁(κ) ∩ ℒ₂(κ) is connected and hence ℒ₁(κ) ∩ ℒ₂(κ) = ∅ if , and ℒ₀(κ) ∩ ℒ₁(κ) ∩ ℒ₂(κ) = ∅ for arbitrary κ. All spaces in ℒ₁(ℵ₀) are homeomorphic, while ℒ₂(ℵ₀) contains precisely ℵ₁ spaces up to homeomorphism. The class ℒ₁(κ)...