Displaying 2221 – 2240 of 8506

Showing per page

Descriptive compact spaces and renorming

L. Oncina, M. Raja (2004)

Studia Mathematica

We study the class of descriptive compact spaces, the Banach spaces generated by descriptive compact subsets and their relation to renorming problems.

Descriptive properties of mappings between nonseparable Luzin spaces

Petr Holický, Václav Komínek (2007)

Czechoslovak Mathematical Journal

We relate some subsets G of the product X × Y of nonseparable Luzin (e.g., completely metrizable) spaces to subsets H of × Y in a way which allows to deduce descriptive properties of G from corresponding theorems on H . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points y in Y with particular properties of fibres f - 1 ( y ) of a mapping f X Y . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.

Descriptive Sets and the Topology of Nonseparable Banach Spaces

Hansell, R. (2001)

Serdica Mathematical Journal

This paper was extensively circulated in manuscript form beginning in the Summer of 1989. It is being published here for the first time in its original form except for minor corrections, updated references and some concluding comments.

Devil's staircase route to chaos in a forced relaxation oscillator

Lluis Alsedà, Antonio Falcó (1994)

Annales de l'institut Fourier

We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameter values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by Kennedy, Krieg and Chua (in [10]) related with the appearance of...

Diagonal conditions in ordered spaces

Harold Bennett, David Lutzer (1997)

Fundamenta Mathematicae

For a space X and a regular uncountable cardinal κ ≤ |X| we say that κ ∈ D(X) if for each T X 2 - Δ ( X ) with |T| = κ, there is an open neighborhood W of Δ(X) such that |T - W| = κ. If ω 1 D ( X ) then we say that X has a small diagonal, and if every regular uncountable κ ≤ |X| belongs to D(X) then we say that X has an H-diagonal. In this paper we investigate the interplay between D(X) and topological properties of X in the category of generalized ordered spaces. We obtain cardinal invariant theorems and metrization theorems...

Diagonal points having dense orbit

T. K. Subrahmonian Moothathu (2010)

Colloquium Mathematicae

Let f: X→ X be a topologically transitive continuous map of a compact metric space X. We investigate whether f can have the following stronger properties: (i) for each m ∈ ℕ, f × f ² × × f m : X m X m is transitive, (ii) for each m ∈ ℕ, there exists x ∈ X such that the diagonal m-tuple (x,x,...,x) has a dense orbit in X m under the action of f × f ² × × f m . We show that (i), (ii) and weak mixing are equivalent for minimal homeomorphisms, that all mixing interval maps satisfy (ii), and that there are mixing subshifts not satisfying (ii)....

Currently displaying 2221 – 2240 of 8506