Some Fuzzy SP-topological Properties
Steinhaus' lattice points problem addresses the question of whether it is possible to cover exactly n lattice points on the plane with an open ball for every fixed nonnegative integer n. This paper includes a theorem which can be used to solve the general problem of covering elements of so-called quasi-finite sets in Hilbert spaces. Some applications of this theorem are considered.
Let be a compact quasi self-similar set in a complete metric space and let denote the space of all probability measures on , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in the lower concentration dimension is equal to , while the upper concentration dimension is equal to the Hausdorff dimension of .
An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection from e to X has fixed cardinality n+1 ( arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection from e to X where X is a compact subset of .
Basic examples show that coincidence theory is intimately related to central subjects of differential topology and homotopy theory such as Kervaire invariants and divisibility properties of Whitehead products and of Hopf invariants. We recall some recent results and ask a few questions which seem to be important for a more comprehensive understanding.