Decompositions of manifolds into codimension one submanifolds
We consider the class of decreasing (G) spaces introduced by Collins and Roscoe and address the question as to whether it coincides with the class of decreasing (A) spaces. We provide a partial solution to this problem (the answer is yes for homogeneous spaces). We also express decreasing (G) as a monotone normality type condition and explore the preservation of decreasing (G) type properties under closed maps. The corresponding results for decreasing (A) spaces are unknown.
The aim of this paper is to show that every Hausdorff continuous interval-valued function on a completely regular topological space X corresponds to a Dedekind cut in C(X) and conversely.
We consider definably complete Baire expansions of ordered fields: every definable subset of the domain of the structure has a supremum and the domain cannot be written as the union of a definable increasing family of nowhere dense sets. Every expansion of the real field is definably complete and Baire, and so is every o-minimal expansion of a field. Moreover, unlike the o-minimal case, the structures considered form an axiomatizable class. In this context we prove a version of the Kuratowski-Ulam...
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which and . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...
According to A. Lasota, a continuous function from a real compact interval into itself is called generically chaotic if the set of all points , for which and , is residual in . Being inspired by this definition we say that is densely chaotic if this set is dense in . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...
∗ The first and third author were partially supported by National Fund for Scientific Research at the Bulgarian Ministry of Science and Education under grant MM-701/97.A theorem proved by Fort in 1951 says that an upper or lower semi-continuous set-valued mapping from a Baire space A into non-empty compact subsets of a metric space is both lower and upper semi-continuous at the points of a dense Gδ -subset of A. In this paper we show that the conclusion of Fort’s theorem holds under the weaker...
We consider the space of densely continuous forms introduced by Hammer and McCoy and investigated also by Holá . We show some additional properties of and investigate the subspace of locally bounded real-valued densely continuous forms equipped with the topology of pointwise convergence . The largest part of the paper is devoted to the study of various cardinal functions for , in particular: character, pseudocharacter, weight, density, cellularity, diagonal degree, -weight, -character,...