Loading [MathJax]/extensions/MathZoom.js
Displaying 21 –
40 of
120
This paper investigates necessary and sufficient conditions for a space to have an H-closed extension with countable remainder. For countable spaces we are able to give two characterizations of those spaces admitting an H-closed extension with countable remainder. The general case is more difficult, however, we arrive at a necessary condition — a generalization of Čech completeness, and several sufficient conditions for a space to have an H-closed extension with countable remainder. In particular,...
The notion of a Hausdorff function is generalized to the concept of H-closed function and the concept of an H-closed extension of a Hausdorff function is developed. Each Hausdorff function is shown to have an H-closed extension.
A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii spaces, for which every sheaf at a point can be amalgamated in a natural way. Let denote the space of continuous real-valued functions on with the topology of pointwise convergence. Our main result...
The main goal of this paper is to construct, for every n,m ∈ ℕ, a hereditarily indecomposable continuum of dimension m which has exactly n autohomeomorphisms.
We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map which is ε-close to f such that the inverse limit is hereditarily indecomposable.
For an arbitrary topological group G any compact G-dynamical system (G,X) can be linearly G-represented as a weak*-compact subset of a dual Banach space V*. As was shown in [45] the Banach space V can be chosen to be reflexive iff the metric system (G,X) is weakly almost periodic (WAP). In the present paper we study the wider class of compact G-systems which can be linearly represented as a weak*-compact subset of a dual Banach space with the Radon-Nikodým property. We call such a system a Radon-Nikodým...
Several classes of hereditarily normal spaces are characterized in terms of extending upper semi-continuous compact-valued mappings. The case of controlled extensions is considered as well. Applications are obtained for real-valued semi-continuous functions.
For a given mapping f between continua we consider the induced mappings between the corresponding hyperspaces of closed subsets or of subcontinua. It is shown that if either of the two induced mappings is hereditarily weakly confluent (or hereditarily confluent, or hereditarily monotone, or atomic), then f is a homeomorphism, and consequently so are both the induced mappings. Similar results are obtained for mappings between cones over the domain and over the range continua.
Currently displaying 21 –
40 of
120